73 research outputs found

    Design concept evaluation based on rough number and information entropy theory

    Get PDF
    Concept evaluation at the early phase of product development plays a crucial role in new product development. It determines the direction of the subsequent design activities. However, the evaluation information at this stage mainly comes from experts' judgments, which is subjective and imprecise. How to manage the subjectivity to reduce the evaluation bias is a big challenge in design concept evaluation. This paper proposes a comprehensive evaluation method which combines information entropy theory and rough number. Rough number is first presented to aggregate individual judgments and priorities and to manipulate the vagueness under a group decision-making environment. A rough number based information entropy method is proposed to determine the relative weights of evaluation criteria. The composite performance values based on rough number are then calculated to rank the candidate design concepts. The results from a practical case study on the concept evaluation of an industrial robot design show that the integrated evaluation model can effectively strengthen the objectivity across the decision-making processes

    The Effect of Calcium and Phosphorous on Growth, Feed Efficiency, Mineral Content and Body Composition of Brown Marbled Grouper (Epinephelus Fuscoguttatus) Juvenile

    Full text link
    The objectives of this study were to know concentration of calcium (Ca) and posphorus (P) in feed for growth, feed efficiency, proximate composition of the body and mineral content of brown marbled grouper juvenile. The study was conducted in the Center for Brackiswater Aquaculture Development, Takalar with randomized completed design 6 x 3 with the treatment of Ca and P supplement in feed i.e., (A) the supplement of 0 g/kg Ca and 0 g/kg P, (B) the supplement of 6 g/kg Ca and 0 g/kg P, (C) the supplement of 0 g/kg Ca and 6 g/kg P, (D) the supplement of 6 g/kg Ca and 6 g/kg P, (E) the supplement of 12 g/kg Ca and 6 g/kg P, and (F) the supplement of 18 g/kg Ca and 6 g/kg P. The result showed that P supplement with doses of 6 g/kg and Ca of 0 g/kg in feed are significantly affects on relative growth, feed efficiency, proximate composition and mineral content of brown marbled grouper juvenile

    Strain rate sensitivities of deformation mechanisms in magnesium alloys

    Get PDF
    The final publication is available at Elsevier via https://dx.doi.org/10.1016/j.ijplas.2018.04.005 © 2018. This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/Strain rate sensitivity (SRS) is an important material property that governs the rate dependent mechanical behaviors associated with deformation rate changes, creep, stress relaxation, formability, etc. The variety of activated deformation mechanisms of magnesium alloys under different loading paths, e.g. tension vs. compression, implies that SRS of magnesium alloys obviously depends on loading paths, and each deformation mechanism has its own SRS. However, a single SRS scheme is commonly employed in numerical modeling to describe the rate dependent behaviors of magnesium alloys, which disregards the distinction of SRSs among different deformation mechanisms. The implementation of the constitutive model that works for a wide range of values of SRSs has been a challenge to crystal plasticity modeling for metals with multiple deformation mechanisms like magnesium. Especially, very small values of SRS, corresponding to low rate-sensitivity, generally lead to high nonlinearity involved in the governing equations, and then computational failure. In this paper, the elasto-viscoplastic self-consistent (EVPSC) crystal plasticity model is improved to enhance its numerical robustness for very small SRS values. Taking advantage of this improvement, different SRSs for various deformation mechanisms are employed to investigate the strain rate dependent behaviors of magnesium alloys at room temperature. First, the SRSs for various deformation mechanisms are determined based on the compressive stress relaxation tests on an AZ31 alloy plate; secondly, the obtained SRSs are applied to interpret internal elastic strain evolution of the same magnesium alloy under in-plane compression; finally, the determined SRSs are applied to investigate the deformation of another AZ31 alloy under various deformation paths and strain rates. The present work is the first effort on studying effects of strain rate-sensitivity on mechanical behavior of Mg alloys under wide range of applied strain rates by using an improved self-consistent polycrystal plasticity model. Good agreement between the experiments and simulations reveals the importance and necessity of using different SRSs for the deformation mechanisms involved. The rate dependent behaviors of magnesium alloys can be better described by using multiple SRSs associated to each operative deformation mechanism.Natural Sciences and Engineering Research Council of CanadaMinistry of Research, Innovation and ScienceNational Natural Science Foundation of China [51575346, 51675331]Shanghai Jiao Tong UniversityAutomotive Partnerships CanadaCanada Research Chairs Secretaria

    Design and baseline characteristics of the finerenone in reducing cardiovascular mortality and morbidity in diabetic kidney disease trial

    Get PDF
    Background: Among people with diabetes, those with kidney disease have exceptionally high rates of cardiovascular (CV) morbidity and mortality and progression of their underlying kidney disease. Finerenone is a novel, nonsteroidal, selective mineralocorticoid receptor antagonist that has shown to reduce albuminuria in type 2 diabetes (T2D) patients with chronic kidney disease (CKD) while revealing only a low risk of hyperkalemia. However, the effect of finerenone on CV and renal outcomes has not yet been investigated in long-term trials. Patients and Methods: The Finerenone in Reducing CV Mortality and Morbidity in Diabetic Kidney Disease (FIGARO-DKD) trial aims to assess the efficacy and safety of finerenone compared to placebo at reducing clinically important CV and renal outcomes in T2D patients with CKD. FIGARO-DKD is a randomized, double-blind, placebo-controlled, parallel-group, event-driven trial running in 47 countries with an expected duration of approximately 6 years. FIGARO-DKD randomized 7,437 patients with an estimated glomerular filtration rate >= 25 mL/min/1.73 m(2) and albuminuria (urinary albumin-to-creatinine ratio >= 30 to <= 5,000 mg/g). The study has at least 90% power to detect a 20% reduction in the risk of the primary outcome (overall two-sided significance level alpha = 0.05), the composite of time to first occurrence of CV death, nonfatal myocardial infarction, nonfatal stroke, or hospitalization for heart failure. Conclusions: FIGARO-DKD will determine whether an optimally treated cohort of T2D patients with CKD at high risk of CV and renal events will experience cardiorenal benefits with the addition of finerenone to their treatment regimen. Trial Registration: EudraCT number: 2015-000950-39; ClinicalTrials.gov identifier: NCT02545049

    Cross domain knowledge cell clustering method for biologically inspired design

    No full text
    To tackle the problem existing in the process of cross-domain knowledge acquisition in biologically inspired design, a functional semantic clustering based on functional feature semantic correlation and an environment-based clustering based on environment-constrained adaptability for biologically inspired design are proposed. On the one hand, the fuzzy theory and fuzzy mathematics are introduced into the knowledge cell clustering algorithm, and the semantic similarity calculation method based on the fuzzy membership function is proposed to realize the semantic clustering based on the functional keywords. On the other hand, an AFCM algorithm is proposed by introducing the FCM clustering algorithm into the knowledge cell clustering process, and combining the provided different types of environmental feature constraints similarity algorithm, the environment constra-ined clustering based on the adaptability of environmental feature constraints is achieved. Finally, the corresponding prototype system is developed, and the visual prosthesis device design is tested. The results show that the clustering time and accuracy are greatly improved and the clustering efficiency is improved significantly. The algorithm avoids effectively the discreteness of cross domain knowledge distribution, reduces the number of the research objects during the design process, and can acquire reasonably the existing design knowledge, which establishes a basis for further study

    Synthesis and biological evaluation of sophocarpinic acid derivatives as anti-HCV agents

    Get PDF
    Chronic hepatitis C virus (HCV) infection has become a major public health burden worldwide. Twenty-two sophocarpinic acid or matrine derivatives were synthesized and their anti-HCV activities were evaluated in vitro. The structure-activity analysis revealed that (i) sophocarpinic acids with a D-seco 3-ring structure scaffold were more favorable than matrines with a 4-ring scaffold; (ii) the introduction of an electron-withdrawing group on the phenyl ring in 12-N-benzenesulfonyl Δβγ sophocarpinic acids was beneficial for the antiviral activity against HCV. Among them, compounds 9h and 9j exhibited the most potent inhibitory activities on HCV replication with selectivity indies of 70.3 and 30.9, respectively. Therefore, both were selected as antiviral candidates for further investigation
    corecore